新(xīn)闻中心
NEWS
企业新(xīn)闻
【午晟智造】建筑常用(yòng)力學(xué)计算公式
时间:2017-04-18 09:29 来源:午晟智造 点击:

轴向拉伸与压缩
正应力 σ=FN/A
正应变 ε=Δl/l   (无量纲)
胡克定律 Δl=FNl/EA        EA為(wèi)抗拉(压)刚度
σ=Eε  E為(wèi)弹性模量
泊松比   ν=【ε’/ε】   横向比纵向
刚度条件:Δl=FNl/EA <=[Δl] 或 δ<=[δ]
          先计算每段的轴力,每段的Δl加起来即為(wèi)总的Δl
          注意节点是位移   P151
拉压超静定:
1按照约束的性质画出杆件或节点的受力图
2根据静力平衡列出所有(yǒu)独立的方程
3画出杆件或杆系节点的变形-位移图
4根据变形几何关系图建立变形几何关系方程,建立补充方程
5将胡可(kě)定律带入变形几何方程,/得到解题需要的补充方程
6独立方程与补充方程联立,求的所有(yǒu)的约束力
剪切
1剪切胡克定律 τ=Gγ   G~MPa為(wèi)剪切弹性模量,γ為(wèi)切应变(无量纲)
2 G=E/2(1+ν)  ν泊松比
3剪切与挤压实例
  校核铆钉的剪切强度
  单剪(两层板)τ=Fs/As =F/A      F為(wèi)一个方向的拉力
  双剪(三层板)τ=Fs/As =F/nA     n整块板上所有(yǒu)的铆钉
  校核铆钉的挤压强度
  挤压  σc=Fc/Ac
        σc=Fc/nAc=F/ntd    n為(wèi)对称轴一侧的铆钉数
  校核板(主板、盖板)的抗拉强度
  σ=F/A=F/t(b-nd)<<[σ]   n 為(wèi)危险截面上的铆钉数
扭转:
1外力偶矩:T=9550 Nk / n ( Nk~kw,n~r/min)
2扭矩 Mn = T  (Mn~N*m) 判断方向,右手螺旋定则,向外為(wèi)正,内為(wèi)负
3扭矩图
4切应变、剪切角γ= θ*ρ(θ為(wèi)单位扭转角
5切应力:τρ=G*γρ=Gρθ
扭转角公式:dψ=Mdx/GIp
6θ=Mn/G*Ip    刚度校核公式   
     Ip~mm4  极惯性矩, 与截面形状有(yǒu)关,GIp 抗扭刚度,θ~rad/m
7τmax=Mn/Wp=Mnρ/Ip 强度校核公式  
     Wp~mm3抗扭截面模量,与截面形状有(yǒu)关
8 Ip 和Wp 的计算:
     实心圆截面: Wp = ПD3/16             Ip = ПD4/32
     空心圆截面:Wp = ПD3(1-α4)/16     Ip = ПD4(1-α4)/32
     薄壁圆截面:Wp = 2Пr02t  r0=D0/2=D/2      Ip = 2Пr03t
扭转角 φ= Mn*l/G*Ip  (l為(wèi)杆長(cháng))  φ~rad/m
10 自由扭转
   截面周边的切应力方向与周边平行,角点出切应力為(wèi)0
   τmax=Mn/αhb2     長(cháng)边中点处
   θ=Mn/βGhb3     b為(wèi)短边,h為(wèi)長(cháng)边,αβ為(wèi)相关系数
   无论是扭转强度,还是扭转刚度,圆形截面比正方形截面要好。
   狭長(cháng)矩形:τmax=3Mn/hb     θ=3Mn/hGb3          φ=3Mnl/hGb3
      闭口薄壁杆 τmax=3Mn/2Ωδ   Ω為(wèi)-截面中心線(xiàn)所围截面积 δ為(wèi)壁厚
              Φ=Mnls/4GΩ2δ    s為(wèi)截面中線(xiàn)的長(cháng)度
              θ=MnS/4GΩ2δ
   等厚度开口薄壁杆 τ=3Mn/hδ2    φ=3Mnl/Ghδ3   (计算时展开成矩形)
   在抗扭性能(néng)方面,闭口薄壁杆遠(yuǎn)比开口薄壁杆好
 
 
弯曲:
静矩:Sz=∫ydA   Sy=∫zdA   (+-)
形心坐(zuò)标:yc=Sz/A   zc=Sy/A  (结合求形心坐(zuò)标的方法,组合法、负值法)(+-)
惯性矩:Iz=∫y2dA  Iy=∫z2dA   (+)      (对某轴)
惯性积:Iyz=∫yzdA       (+-)
极惯性矩:Ip=∫ρ2dA=Iy+Iz   (+)      (对某两坐(zuò)标轴构成的平面)
平行移轴公式:
移动后的:Iz1=Iz+b2A
          Iy1=Iy+b2A
          Iyz1=Iyz+abA
弯曲正应力
1剪力方向:左截面向上為(wèi)正,右截面向下為(wèi)正,
            左半部向上,则正,右半部向下,则负
2弯矩方向:下陷两面皆正,上拱两面皆负,
            左半部顺时针,则正,右半部逆时针,则负
3剪力方程、弯矩方程、剪力图、弯矩图
4分(fēn)布载荷、剪力、弯矩之间的关系
  铰链处弯矩為(wèi)0
5叠加原理(lǐ)做弯矩图
6σ=Ey/ρ   1/ρ=M/EIz          EI抗弯刚度,Iz对中性轴的惯性矩
 σ=My/I=M/Wz           W抗弯截面模量
7弯曲正应力强度条件
  塑性:σmax=Mmax/Wz<=[σ]
  脆性:σtmax<=[σt]   σcmax<=[σc]      (一拉一压,画图表示)
 强度校核做题步骤:1.画剪力图和弯矩图
                   2.确定最大正弯矩和最大负弯矩所在的截面
                   3.求截面的形心主轴z和惯性矩Iz
                   4.求σ,和题设做比较       σ=My/I=M/Wz
弯曲切应力
矩形:
τ=FsSz*/bIz  (剪力,所求切应力点一下面积对中性轴的静矩,横截面的宽度,横截面对中性轴的惯性矩)    y=0,即中性轴处最大 max=3Fs/2A
工字型截面:
τ=FsSz*/tIz    (t為(wèi)腹板宽度    max=Fs/th0(腹板長(cháng)度)
圆截面:
τ(y)=FsSz*(y)/b(y)Iz      (沿y轴方向)  max=4Fs/3A
强度条件:
     τ=FsSz*/bIz  《=[τ]          
弯曲中心:
规律:1具有(yǒu)两个对称轴或反对称轴的截面弯曲中心与形心重合。
      2具有(yǒu)一个对称轴的截面,弯曲中心必在其对称轴上
      3两狭長(cháng)矩形组合成的截面,弯曲中心為(wèi)两矩形中線(xiàn)的交点。
只平面弯曲而不扭转的条件:横向力与形心主轴平行且过弯曲中心。
提高弯曲强度的措施:
1 减小(xiǎo)Mmax:合理(lǐ)安排载荷、均匀分(fēn)布;减小(xiǎo)跨度或改為(wèi)超静定梁
2提高Wz:改变材料,增大Iz
3使用(yòng)变截面梁:Wz=M(x)/[σ]   (等强度梁)
弯曲变形
挠度和转角
转角方程:EIy”=-M(x)  
          EIθ=EIy’=∫-M(x)dx+C
挠曲線(xiàn)方程:EIy=∫[∫-M(x)dx]dx + Cx + D
确定积分(fēn)常数:边界条件:x=0 时,y1=0  θ1=0
        变形连续条件:y1’=y2’,y1=y2,得到C1、C2关系,再结合边界条件
梁的刚度校核:ymax/l<=[y/l]  θmax<=[θ]
简单超静定梁的解法:
1选定多(duō)余约束,用(yòng)多(duō)余约束力(一般是一对儿)来表示,将其变為(wèi)静定梁
2列出在多(duō)余约束力处的变形(y和θ),确定原约束力之间的关系,将此式带入关系式(即补充方程),求出多(duō)余约束力
3根据静力平衡条件解出其他(tā)的力
4进行梁的刚度和强度校核


组合变形
拉伸压缩与弯曲组合
σ=σN +σM =FN/A +- My/I(轴向正应力+-弯曲正应力)
σMax/min=FN/A +- Mmax/Wz    (边缘处)
σMax/min=FN/A +- Mmax/Wz <=[σ]
除了需要叠加之外,其他(tā)与前面的知识点一样
偏心拉压
σ=FN/A       σ=Mzy/Iz               σ =Myz/Iy
σ=σ +σ +σ
σ=F(